PAMI is a Python library containing 100+ algorithms to discover useful patterns in various databases across multiple computing platforms. (Active)
Previous | 🏠 Home | Next |
In this page, we first describe and illustrate the basic process to implement a mining algorithm and store the results. Next, we describe the process to evaluate a mining algorithm at different constraint values in a database.
# import the necessary algorithm from the PAMI library
from PAMI.<model>.<basic/closed/maximal/topK> import <algorithmName> as alg
# Call the necessary algorithm by passing necessary input parameters. The input parameters include inputFileName and the user-specified constraints.
obj = alg.<algorithmName>(<input parameters>)
# Start the mining algorithm
obj.mine()
# Collect the patterns discovered by the algorithm in the database
discoveredPatterns = obj.getDiscoveredPatterns()
# Print the total number of patterns
print("Total number of discovered patterns:", len(discoveredPatterns))
# Store the discovered patterns in a file.
obj.save('<outputFileName>')
# Output the discovered patterns as a data frame
Df = obj.getPatternInDataFrame()
# Calculate the [USS] memory consumed by the algorithm
print("Total Memory in USS:", obj.getMemoryUSS())
# Calculate the RSS memory consumed by the algorithm. We suggest using RSS memory for the memory comparison
print("Total Memory in RSS", obj.getMemoryRSS())
# Calculate the runtime requirements by the algorithm
print("Total ExecutionTime in seconds:", obj.getRuntime())
Note: Click here to download the transactional database
#import the frequent pattern mining algorithm
from PAMI.frequentPattern.basic import FPGrowth as alg
#inputFile = 'fileName'
inputFile = 'Transactional_T10I4D100K.csv'
#specify the constraints used in the model
minSup=400
#create the object of the mining algorithm
obj = alg.FPGrowth(inputFile, minSup)
#start the mining process
obj.mine()
#Print the number of interesting patterns generated
print("Total number of Frequent Patterns:", len(obj.getPatterns()))
#Save the generated patterns in a file
obj.save('outputFile.tsv')
# Determine the memory consumed by the mining algorithm
print("Total Memory in RSS", obj.getMemoryRSS())
# Determine the total runtime consumed by the mining algorithm
print("Total ExecutionTime in seconds:", obj.getRuntime())
# import the necessary algorithm from the PAMI library
from PAMI. < model >.< basic / closed / maximal / topK >
import < algorithmName > as alg
algorithm = 'Algorithm Name'
# Create a data frame to store the values
import pandas as pd
result = pd.DataFrame(columns=['algorithm', 'minSup', 'patterns', 'runtime', 'memory'])
# Specify the List of constraint values
constraintList = ['List of values']
# For each value in the constraint list
for constraint in constraintList:
# Call the necessary algorithm by passing necessary input parameters. The input parameters include inputFileName and the user-specified constraints.
obj = alg. < algorithmName > (< input parameters >)
# Start the mining algorithm
obj.mine()
# store the results in the data frame
result.loc[result.shape[0]] = [algorithm, constraint, len(obj.getPatterns()), obj.getRuntime(), obj.getMemoryRSS()]
# Print the dataframe
result
# Visualize the plots
from PAMI.extras.graph import DF2Fig as dif
# Pass the result data frame to the class
ab = dif.dataFrameInToFigures(result)
# Draw the graphs
ab.plotGraphsFromDataFrame()
#Import the mining algorithm
from PAMI.frequentPattern.basic import FPGrowth as alg
#Import pandas data frame to store the values
import pandas as pd
#Initialize the data frame
result = pd.DataFrame(columns=['algorithm', 'minSup', 'patterns', 'runtime', 'memory'])
#Specify the name of the input file
inputFile = 'Transactional_T10I4D100K.csv'
#specify the seperator
seperator = '\t'
#Create a list of constraint values
minimumSupportList = [500, 600, 700, 800]
#minimumSupport values can be specified between 0 to 1.
#Example: minSupList = [0.005, 0.006, 0.007, 0.008, 0.009]
#specify the name of the algorithm
algorithm = 'FP-growth' #specify the algorithm name
#Run the for loop for each minSup value
for minSup in minimumSupportList:
#Create the object
obj = alg.FPGrowth(inputFile, minSup, seperator)
#start the mining process
obj.mine()
#store the results in the data frame
result.loc[result.shape[0]] = [algorithm, minSup, len(obj.getPatterns()), obj.getRuntime(), obj.getMemoryRSS()]
#Print the dataframe
result
#Visualize the plots
from PAMI.extras.graph import DF2Fig as dif
#Pass the result data frame to the class
ab = dif.dataFrameInToFigures(result)
#Draw the graphs
ab.plotGraphsFromDataFrame()